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Summary: In this paper it is shown that the principal eigenvector is a necessary 
representation of the priorities derived from a positive reciprocal pairwise comparison 
judgment matrix A = (aij) when A is a small perturbation of a consistent matrix. When 
providing numerical judgments, an individual attempts to estimate sequentially an 
underlying ratio scale and its equivalent consistent matrix of ratios. Near consistent matrices 
are essential because when dealing with intangibles, human judgment is of necessity 
inconsistent, and if with new information one is able to improve inconsistency to near 
consistency, then that could improve the validity of the priorities of a decision.  In addition, 
judgment is much more sensitive and responsive to large rather than to small perturbations, 
and hence once near consistency is attained, it becomes uncertain which coefficients should 
be perturbed by small amounts to transform a near consistent matrix to a consistent one.  If 
such perturbations were forced, they could be arbitrary and thus distort the validity of the 
derived priority vector in representing the underlying decision.  

 
 
1.  Introduction 
 
In the field of decision-making, the concept of priority is quintessential and how priorities are 
derived influences the choices one makes.  Priorities should be unique and not one of many 
possibilities, they must also capture the dominance of the order expressed in the judgments of the 
pairwise comparison matrix. The idea of a priority vector has much less validity for an arbitrary 
positive reciprocal matrix A = (aij) than for a consistent and a near consistent matrix.   A positive 
n by n matrix is reciprocal if aji = 1/ aij .   It is consistent if aij ajk = aik,, i,j,k = 1,…, n.  From aij = 
aik / ajk we have aji = ajk / aik = aij-1 and a consistent matrix is reciprocal. A matrix is said to be near 
consistent if it is a small perturbation of a consistent matrix. The custom is to look for a vector w 
=(w1, … ,wn ) such that the matrix W = (wi /wj) is “close” to A = (aij) by minimizing a metric. 
Metric closeness to the numerical values of the aij by itself says little about the numerical precision 
with which one element dominates another directly as in the matrix itself and indirectly through 
other elements as represented by the powers of the matrix. In this paper we show that with 
dominance order, the principal eigenvector, known to be unique to within a positive 
multiplicative constant (thus defining a ratio scale), and made unique through normalization, is the 
only plausible candidate for representing priorities derived from a positive reciprocal near 
consistent pairwise comparison  matrix.  
 
The Analytic Hierarchy Process (AHP) allows for inconsistency because in making judgments 
people are more likely to be cardinally inconsistent than cardinally consistent because they cannot 
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estimate precisely measurement values even from a known scale and worse when they deal with 
intangibles (a is preferred to b twice and b to c three times, but a is preferred to c only five times) 
and ordinally intransitive (a is preferred to b and b to c but c is preferred to a).  One reason for 
filling out an entire matrix is to improve the validity of the judgments in the real world.  When we 
deal with tangibles, a pairwise comparison judgment matrix may be perfectly consistent but 
irrelevant and far off the mark of the true values.  For several reasons a modicum of inconsistency 
may be considered as a good thing and forced consistency without knowledge of the precise values 
as an undesirable compulsion.  If one insists on consistency, people would be required to be like 
robots unable to change their minds with new evidence and unable to look within for judgments 
that represent their thoughts, feelings and preferences.   
 
The AHP also uses a principle of hierarchic composition to derive composite priorities of 
alternatives with respect to multiple criteria from their priorities with respect to each criterion.  It 
consists of multiplying each priority of an alternative by the priority of its corresponding criterion 
and adding over all the criteria to obtain the overall priority of that alternative.  This is perhaps the 
simplest way for composing priorities.  The additive approach is also crucial in doing composition 
using the limiting powers of a priority rather than a judgment matrix when dependence and 
feedback are considered in decision-making.  Different methods for deriving priorities within the 
same hierarchy can lead to different final values for the alternatives [7].   
 
 
2.  What is a Priority Vector? 
 
Now we ask the question, what is priority or more generally what meaning should we attach to a 
priority vector of a set of alternatives? We can think of two meanings. The first is a numerical 
ranking of the alternatives that indicates an order of preference among them.  The other is that the 
ordering should also reflect intensity or cardinal preference as indicated by the ratios of the 
numerical values and is thus unique to within a positive multiplicative constant (a similarity 
transformation).  It is the latter that interests us here as it relates to the principle of hierarchic 
composition under a single criterion.  Given the priorities of the alternatives and given the matrix 
of preferences for each alternative over every other alternative, what meaning do we attach to the 
vector obtained by weighting the preferences by the corresponding priorities of the alternatives 
and adding?  It is another priority vector for the alternatives. We can use it again to derive another 
priority vector ad infinitum.  Even then what is the limit priority and what is the real priority vector 
to be associated with the alternatives? It all comes down to this: What condition must a priority 
vector satisfy to remain invariant under the hierarchic composition principle? A priority vector 
must reproduce itself on a ratio scale because it is ratios that preserve the strength of preferences. 
Thus a necessary condition that the priority vector should satisfy is not only that it should belong 
to a ratio scale, which means that it should remain invariant under multiplication by a positive 
constant c, but also that it should be invariant under hierarchic composition for its own judgment 
matrix so that one does not keep getting new priority vectors from that matrix.  In sum, a priority 
vector x must satisfy the relation Ax = cx , c>0.  We will show that as a result of the need for 
invariance to produce a unique priority vector, x must be the principal right eigenvector of A and 
c is its corresponding principal eigenvalue.  Our problem for positive reciprocal matrices and their 
priorities is a special case of the following:  
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Theorem :  For a given positive matrix A, the only positive vector x and only positive constant c 
that satisfy Ax = cx, is a vector x that is a positive multiple of the Perron vector (principal 
eigenvector) of A, and the only such c is the Perron value (principal eigenvalue) of A. 
 
Proof:  We know that the (right) Perron vector and Perron value satisfy our requirements.  We also 
know that the algebraic multiplicity of the Perron value is one, and that there is a positive left 
eigenvector of A (call it z) corresponding to the Perron value.  Suppose there is a positive vector y 
and a (necessarily positive) scalar d such that Ay = dy. If d and c are not equal, then by 
biorthogonality [2] y is orthogonal to z, which is impossible since both vectors are positive.  If d 
and c are equal, then y and x are dependent since c has algebraic multiplicity one, and y is a positive 
multiple of x. 
 
Significantly and interestingly, for our purpose to derive priorities for a special type of positive 
matrices, the foregoing theorem can also be shown to hold for a class of positive reciprocal 
matrices that are consistent and near consistent without the use of the theorem of Perron. We know 
that the principal eigenvector is the priority vector of a consistent matrix.  For such a matrix aij = 
wi /wj , and it follows from  Aw = nw that the vector w = (w1 ,…, wn ) that is also the principal 
eigenvector of A is its priority vector with corresponding principal eigenvalue c = n.  We can show 
by small and continuous perturbation [3,8] of a consistent matrix A that the resulting near 
consistent matrix (see the next section), has its priority vector as its principal eigenvector obtained 
as a perturbation of the corresponding principal eigenvector of A.  Thus if we assume that a 
judgment matrix is obtained as a small perturbation of an underlying consistent matrix constructed 
from a ratio scale w = (w1 ,…, wn ), its priority vector coincides with its principal eignvector 
obtained as a small perturbation of w.  For the perturbation proof, which is fairly long and 
elaborate, see [4]. 
 
That would end our quest if we could also say what to do about a positive inconsistent matrix with 
large inconsistency.  We need to improve its consistency to speak of its priority vector.  Using the 
Perron vector and Perron root of such a matrix, we show that it can be transformed in steps to a 
near consistent matrix whose priority vector we now know is its principal eigenvector. 
 
 
3. Some Observations on Positive Reciprocal Matrices and Their Perturbation 
 
We have for an n by n consistent matrix A:  A k = n k-1 A, A = (wi/wj). A near consistent matrix is a 
small reciprocal (multiplicative) perturbation of a consistent matrix.  It is given by the Hadamard 
product: A = WoE where W = (wi/wj ) and    Small means  is close to one.   

Unlike an additive perturbation of the form , a reciprocal perturbation  is 
multiplicative.  It can be transformed to an additive perturbation of a consistent matrix by writing: 
 

1( ), .ij ji ijE e e e -º = ije

ij ija g+ 1,ij ij ji ija e e e -=
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Note that with a reciprocal perturbation we ensure that �max ³ n which helps determine the validity 
of w as a priority vector of a near consistent matrix.  We have 
 

. 

 
The computation 
 

 

reveals that   Moreover, since      for all x > 0, with equality if and only  if x = 
1, we see that  if and only if all gij  = 1, which is equivalent to having all aij = wi  / wj.  The 
foregoing arguments show that a positive reciprocal matrix A has , with equality if and 
only if A is consistent. 
 
 
4. The General Case: How to Transform a Positive Reciprocal Matrix to a Near Consistent 
Matrix 
 
To improve the validity of the priority vector, we must transform a given reciprocal judgment 
matrix to a near consistent matrix.  In practice, the judgments available to make the comparisons 
may not be sufficient to bring the matrix to near consistency.  In that case we abandon making a 
decision based on the information we have, and must seek additional knowledge to modify the 
judgments. 
 

The final question then is how to construct the g perturbations in a general reciprocal matrix. A 
judgment matrix already has some built in consistency; it is not an arbitrary reciprocal matrix. 
Among others, inconsistency in a matrix may be due to an error such as putting aji instead of aij in 
the i,j position which if appropriately detected and changed the matrix may become near consistent 
or at least improve the consistency of A.  Because the principal eigenvector is necessary for 
representing dominance (and priorities when near consistency is obtained), we must use an 
algorithm based on the eigenvector, whose existence is assured by Perron’s theory for positive 
matrices, to improve the consistency of a reciprocal matrix until it is near consistent.  Can we do 
that?  
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For a given positive reciprocal matrix A= [aij] and a given pair of distinct indices k > l, define A(t) 
= [aij(t)] by akl(t) = akl + t, alk(t) = (alk + t) –1, and aij(t) = aij  for all i > k, j > l , so A(0) = A.  Let 
(t) denote the Perron eigenvalue of A(t) for all t in a neighborhood of t = 0 that is small enough to 
ensure that all entries of the reciprocal matrix A(t) are positive there.  Finally, let v = [vi] be the 
unique positive eigenvector of the positive matrix AT that is normalized so that vTw = 1. Then a 
classical perturbation formula [2, theorem 6.3.12] tells us that  
 

 

We conclude that  
 

 for all i,j=1,…,n. 

Because we are operating within the set of positive reciprocal matrices, - for all i 

and j. 
Thus, to identify an entry of A whose adjustment within the class of reciprocal matrices would 
result in the largest rate of change in we should examine the n(n-1)/2 values 

and select (any) one of largest absolute value.  This is the method proposed 
for positive reciprocal matrices by Harker [1].  
 
To illustrate the methods discussed above, consider an example involving the prioritization of 
criteria used to buy a house for a family whose members cooperated to provide the judgments 
(Table 1). 
 

 
Table 1 A Family’s House Buying Pairwise Comparison Matrix for the Criteria 
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Table 2 gives the array of partial derivatives for the matrix of criteria in Table 1.  
 

Table 2 Partial Derivatives for the House Example 
 

 
 
 
The (4,8) entry in Table 2 (in bold print) is largest in absolute value. Thus, the family could be 
asked to reconsider their judgment (4,8) of Age vs. Finance. One needs to know how much to 
change a judgment to improve consistency, and we show that next. One can then repeat this process 
with the goal of bringing the C.R. within the desired range. If the indicated judgments cannot be 
changed fully according to one’s understanding, they can be changed partially. Failing the 
attainment of a consistency level with justifiable judgments, one needs to learn more before 
proceeding with the decision. 
 
Two other methods, presented here in order of increasing observed efficiency in practice, are 
conceptually different. They are based on the fact that  

 

Size Trans. Nbrhd. Age Yard Modern Cond. Finance
Size - 0.001721 0.007814 -0.00041 0.00054 0.000906 -0.08415 -0.03911
Trans. - - -0.00331 0.001291 0.002485 0.003249 -0.06021 -0.01336
Nbrhd. - - - -0.00091 -0.00236 -5.7E-05 0.008376 -0.07561
Age - - - - -0.01913 -0.03372 0.007638 0.094293
Yard - - - - - -0.01366 -0.01409 0.041309
Modern - - - - - - -0.02599 0.029355
Cond. - - - - - - - 0.006487
Finance - - - - - - - -
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This suggests that we examine the judgment for which gij is farthest from one, that is, an entry aij 
for which aij wj / wi is the largest, and see if this entry can reasonably be made smaller.  We hope 
that such a change of aij also results in a new comparison matrix with that has a smaller Perron 
eigenvalue. To demonstrate how improving judgments works, take the house example matrix in 
Table 1.  To identify an entry ripe for consideration, construct the matrix gij = aij wj / wi (Table 3).  
The largest value in Table 3 is 5.32156, which focuses attention on a37 = 6.  
 
 

Table 3: gij = aij wj/wi 
 
 
 
 
 
 
 
 
 

 

How does one determine the most consistent entry for the (3,7) position? Harker has shown that 
when we compute the new eigenvector w after changing the (3,7) entry, we want the new (3,7) 
entry to be w3 / w7 and the new (7,3) to be w7 /w3 . On replacing a37 by w3 / w7 and a73 by w7 / w3 
and multiplying by the vector w one obtains the same product as one would by replacing a37 and 
a73 by zeros and the two corresponding diagonal entries by two (see Table 4).   

Table 4 

 

 

We take the Perron vector of the latter matrix to be our w and use the now-known values of w3 / 
w7 and w7 / w3 to replace a37 and a73 in the original matrix. The family is now invited to change 
their judgment towards this new value of a37 as much as they can. Here the value was a37 = 
0.102/0.223=1/ 2.18, approximated by 1/ 2 from the AHP integer valued scale and we 
hypothetically changed it to 1/2 to illustrate the procedure (see Table 5). If the family does not 

Size Trans. Nbrhd. Age Yard Modern Cond. Finance w
Size 1 1.7779 1.756208 0.774933 1.163989 1.418734 0.425449 0.494088 0.174
Trans. 0.562461 1 0.548777 1.556678 1.636746 1.994957 0.717895 0.794016 0.062
Nbrhd. 0.569408 1.822233 2 1.134652 0.994177 1.615679 0 0.675211 0.102
Age 1.290434 0.642394 0.881328 1 0.584131 0.533978 1.64704 2.23156 0.019
Yard 0.859115 0.610968 1.005857 1.711945 1 0.609428 1.315833 1.697915 0.034
Modern 0.704854 0.501264 0.618935 1.872735 1.640883 1 1.079564 1.39304 0.041
Cond. 2.35046 1.392962 0 0.60715 0.759975 0.9263 2 0.774223 0.223
Finance 2.02393 1.259421 1.481018 0.448117 0.588958 0.717855 1.291617 1 0.345

  
1.00000 1.55965 3.26120 0.70829 1.07648 1.25947 0.32138 0.48143 
0.64117 1.00000 1.16165 1.62191 1.72551 2.01882 0.61818 0.88194 
0.30664 0.86084 1.00000 0.55848 0.49513 0.77239 5.32156 0.35430 
1.41185 0.61656 1.79056 1.00000 0.59104 0.51863 1.36123 2.37899 
0.92895 0.57954 2.01967 1.69193 1.00000 0.58499 1.07478 1.78893 
0.79399 0.49534 1.29467 1.92815 1.70942 1.00000 0.91862 1.52901 
3.11156 1.61765 2.25498 0.73463 0.93042 1.08858 1.00000 0.99868 
2.07712 1.13386 2.82246 0.42035 0.55899 0.65402 1.00133 1.00000 
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wish to change the original value of a37, one considers the second most inconsistent judgment and 
repeats the process. The procedure just described is used in the AHP software Expert Choice.   
 

Table 5:  Modified Matrix in the a37  and a73  Positions 

 
A refinement of this approach is due to W. Adams. One by one, each reciprocal pair aij and aji in 
the matrix is replaced by zero and the corresponding diagonal entries aii and ajj are replaced by 2, 
the principal eigenvalue is then computed. The entry with the largest resulting  is 
identified for change as described above. This method is in use in the Analytic Network Process 
(ANP) software program Superdecisions [5].  
 
 
4.  Conclusions 
 
We have shown that if inconsistency is allowed in a positive reciprocal pairwise comparison matrix 
(which we have shown it must), the principal eigenvector is necessary for representing the 
priorities associated with that matrix, providing that the inconsistency is less than or equal to a 
desired value.  We also mentioned three ways and illustrated two of them, as to how to improve 
the consistency of judgments and transform an inconsistent matrix to a near consistent one.   
 
 
 
  

maxl maxl
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